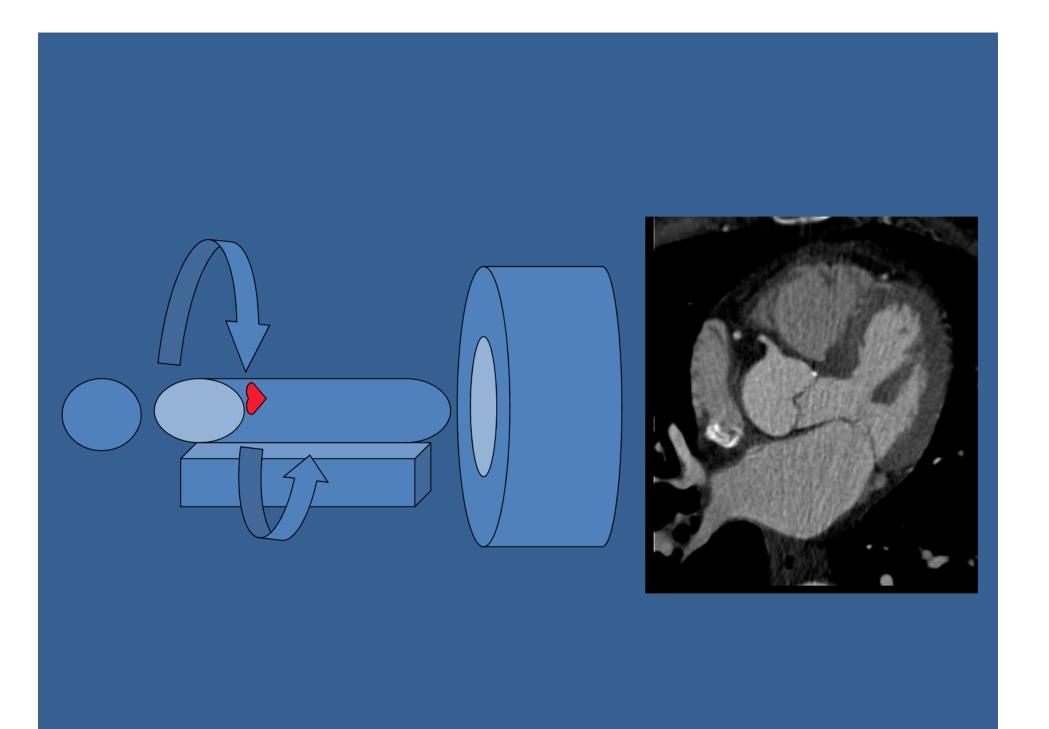
ANGIOPLASTY SUMMIT

April 28 – 30 Seoul, Korea

TCTAP2010

TRANSCATHETER CARDIOVASCULAR THERAPIES ASIA PACIFIC


MDCT & MRI: Where We Are April 29, 2010

CT / MR: Clinical Results and Usefulness for the Interventional Cardiologist

Jeffrey C. Hellinger, MD Associate Professor of Radiology and Pediatrics Associate Director of Advanced Cardiovascular Imaging Stony Brook University School of Medicine Stony Brook, NY USA

CVCT / CVMR: Clinical Innovation

- Acquisition
- Transmission
- Interpretation / Post Processing
- Storage and Retrieval
- Diagnosis
- Treatment planning
- Intraprocedural
 - Guidance
 - Monitoring

Advanced visualization techniques

	Display	Principal use	Advantages	Disadvantages		
MIP	2D	•Structural overview	 "Slice" through dataset in axial, coronal, sagittal, & oblique proj Real-time multiplanar interrogation Depict small caliber structures Depict lower enhanced structures Communicate findings 	 Anatomical overlap Visualization degraded by high density (CT)/Intensity (MRI) structures Loss of structural detail with 个 slab thickness 		
VR	3D	•Structural overview	 "Slice" through dataset in axial, coronal, sagittal, & oblique proj Real-time multiplanar interrogation Depict structural relationships Accurate spatial perception Communicate findings 	 Opacity-transfer function dependent Anatomical overlap Loss of structural detail with 个 slab thickness 		

Advanced visualization techniques

	Display	Principal use	Advantages	Disadvantages
MPR	2D	 Structural details Quantitative analysis 	 "Slice" through dataset in coronal, sagittal, & oblique projections Real-time multiplanar interrogation Simplify image interpretation Single anatomical display 	Limited spatial perception
CPR	2D	Structural detailsCenterline displaySimplify MPR	Single anatomical display Longitudinal cross-sectional anatomical display	Operator dependent
Ray sum	2D	•Structural overview	 "Slice" through dataset in axial, coronal, sagittal, & oblique projections Real-time multiplanar interrogation Radiograph like display 	Loss of structural detail with 个 slab thickness

CCT: Early Performance

MDCTA DETECTION OF <50% CORONARY ARTERY STENOSIS

Author	Collimation		β-Blocker Diagnostic Segments		Sensitivity	Specificity	Accuracy	
Nieman et al. (2001)	4 x 1.0	35	No	73%	81%	97%	95%	
Achenbach et al. (2001)	4 x 1.0	64	No	68%	85%	76%	79%	
Kopp et al. (2002)*	4 x 1.0	102	No	87%	90-95%	95-96%	94-96%	
Vogl et al. (2002)	4 x 1.0	64	No	72%	75%	99%	98%	
Nieman et al. (2002	4 x 1.0	78	No	68%	84%	95%	93%	
Knez et al. (2001)	4 x 1.0	44	Yes	94%	83%	98%	70%	
Becker et al. (2002)	4 x 1.0	28	Yes	95%	81%	90%	89%	
Maruyama et al. (2004)	8 x 1.25	25	No	74%	90%	99%	98%	
Nieman et al. (2002)	12 x 0.75	59	Yes	100%	95%	86%	90%	
Ropers et al. (2002)	12 x 0.75	77	Yes	88%	92%	93%	93%	
Mollett et al. (2004)	16 x 0.75	128	Yes	100%	92%	95%	95%	
Kuettner et al. (2004)	12 x 0.7.5	60	Yes	79%	72%	97%	NA	

MDCTA CORONARY BYPASS GRAFT EVALUATION

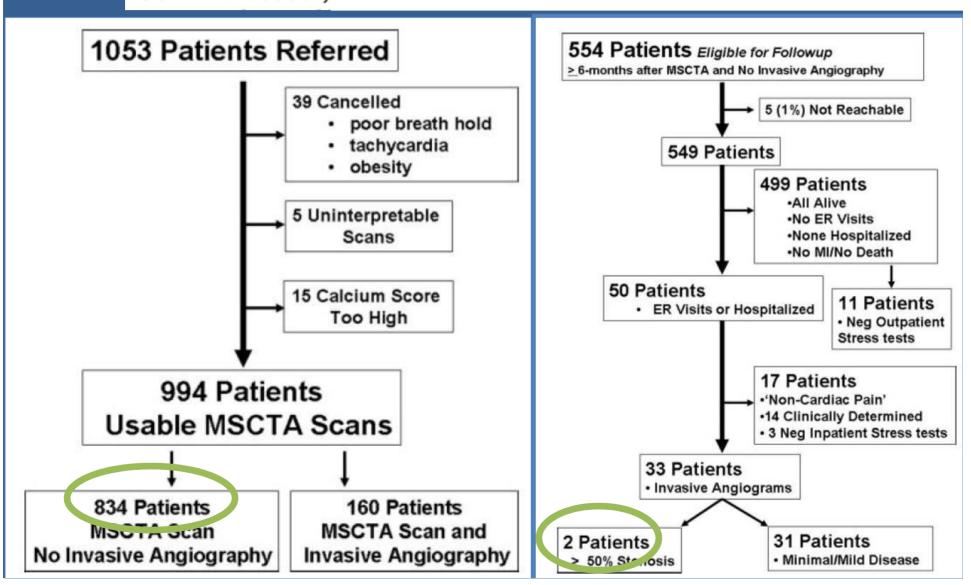
Author	Collimation	Ν	β -Blocker	Diagnostic Segments	Sensitivity	Specificity	Accuracy	
Ropers et al. (2001)	4 x 1.0	65	Yes	Principal Add		the second		
 Occlusion 				100%	97%	98%	98%	
 >50% Stenosis 				62%	75%	92%	88%	
Nieman et al. (2003)*‡	4 x 1.0	20	No					
 Occlusion 				95-100%	100%	97.7-97.5%	98%	
 >50% Stenosis 				90–95%	60-83%	88–90%	84–89%	
Marano et al. (2004)	4 x 2.5	57	Yes					
Occlusion				100%	93%	98%		
 >50% Stenosis 				67%	80%	96%	97% 94%	
Willmann et al. (2004)*	4 x 2.5	20	No					
 Occlusion 				100%	83%	96-98%	94-95%	

Accuracy of 64-MDCT in the Konstantin Nikolaou¹ Diagnosis of Ischemic Heart Disease

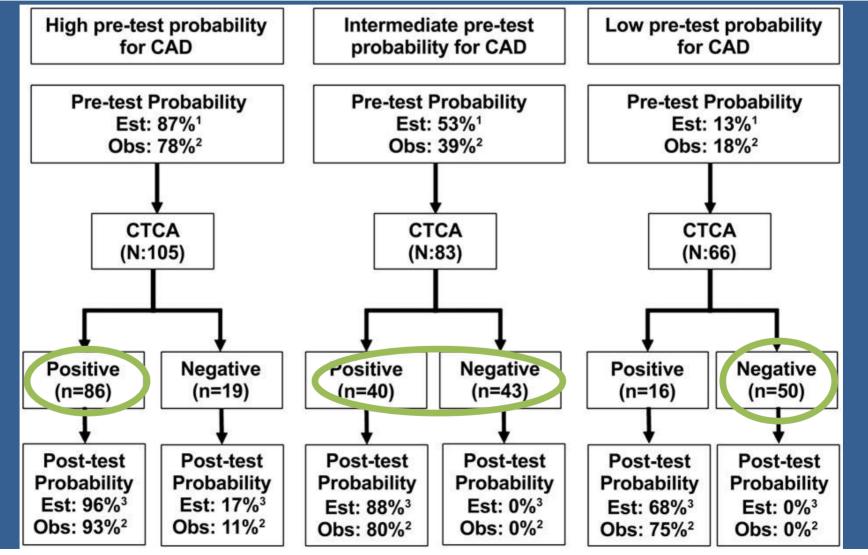
TABLE 1: Diagnostic Accuracy of 64-MDCT in Detecting Coronary Artery Stenoses in Assessable Segments Per Segment-Based Analysis: Consensus Reading

Artery	Assessable Segments	Sensitivity Stenoses > 50%	Sensitivity Stenoses > 75%	Sensitivity > 75% Proximal/ Middle Segment	Specificity	Diagnostic Accuracy	Error Rate	Positive Predictive Value	Negative Predictive Value
LM	100 (68/68)	100 (4/4)	100 (3/3)	100 (3/3)	100 (64/64)	100 (64/64)	0 (0/68)	100 (4/4)	100 (64/64)
LAD	91 (311/340)	78 (47/60)	83 (25/30)	88 (15/17)	92 (232/251)	90 (279/311)	10 (32/311)	70 (47/67)	95 (232/244)
RCA	92 (251/272)	87 (26/30)	92 (12/13)	90 (9/10)	96 (212/221)	95 (238/251)	5 (13/251)	74 (26/35)	98 (212/216)
LCX	86 (293/340)	Co (20/24)	80 (8/10)	100 (5/5)	94 (254/269)	C+(2/4/202)	6 (19/293)	71 (20/28)	96 (254/265)
All	90 (923/1,020)	82 (97/118)	86 (48/56)	91 (32/35)	95 (762/805)	93 (859/923)	7 (64/923)	72 (97/134)	97 (762/789)
				· · · · · · · · · · · · · · · · · · ·	· · · · · · ·				1.5.6.4

Diagnostic value of multislice computed tomography angiography in coronary artery disease: A meta-analysis


European Journal of Radiology 60 (2006) 279–286 Zhonghua Sun*, Wen Jiang

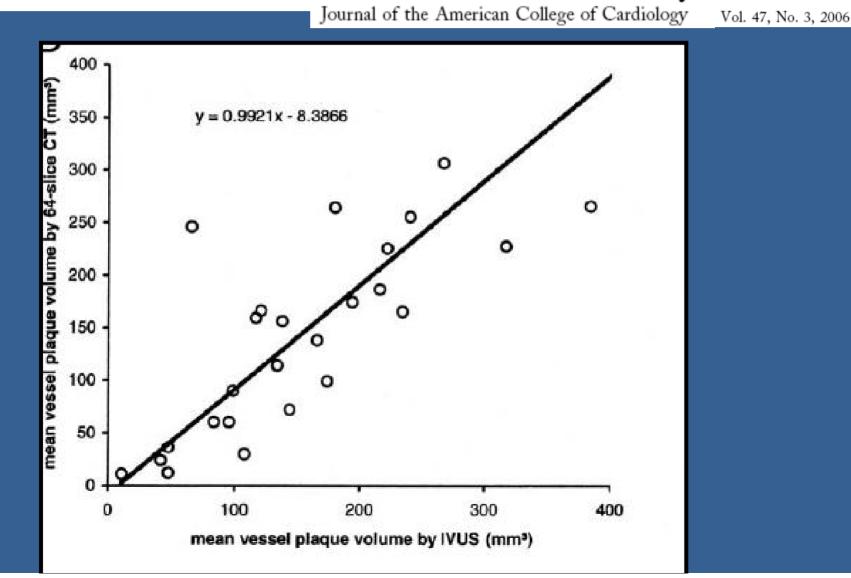
Summary of diagnostic accuracy of MSCT angiography in comparison to coronary angiography in the diagnosis of CAD


Analysis	Studies	Pooled sensitivity (95% CI)	Pooled specificity (95% CI)
Segment-based	34	83% (70% 90%)	02% (01% 96%)
LM	16	98% (94%, 100%)	99% (99%, 100%)
LAD	19	89% (0+70, 2070)	02% (00%, 90%)
LCX	19	73% (61%, 84%)	95% (92%, 98%)
RCA	19	89% (83%, 95%)	94% (91%, 98%)
Vessel-based	16	90% (87%, 94%)	87% (80%, 93%)
Patient-based	21	91% (88%, 95%)	86% (81%, 92%)
4-slice CT	20	76% (70% 22%	020 (00%, 96%)
16-slice CT	19	8201 (11/0, 2010)	25 10 0201 080%
64-slice CT	7	92% (05%, 100%)	0.100 (21.70, 97%)
Proximal RCA	12	84% (14%, 25%)	<i>90 %</i> (93%, 99%)
Middle RCA	12	86% (75%, 96%)	94% (89%, 98%)
Distal RCA	12	83% (67%, 98%)	96% (93%, 98%)
RPDA	11	67% (41%, 92%)	90% (70%, 99%)
Proximal LAD	12	87% (79%, 96%)	90% (84%, 97%)
Middle LAD	12	89% (79%, 99%)	90% (84%, 96%)
Distal LAD	12	69% (49%, 89%)	96% (92%, 99%)
Proximal LCX	12	83% (70%, 96%)	94% (90%, 99%)
Distal LCX	10	66% (35%, 96%)	91% (80%, 99%)
LPDA	9	49% (17%, 81%)	86% (61%, 99%)
DIA1	9	75% (53%, 97%)	92% (86%, 98%)
DIA2	6	55% (14%, 96%)	84% (49%, 99%)
OM	8	78% (51%, 99%)	93% (84%, 99%)
PLA	5	NA	77% (24%, 99%)

Clinical Utility of Coronary CT Angiography: Coronary Stenosis Detection and Prognosis in Ambulatory Patients

John R. Lesser, Catheterization and Cardiovascular Interventions 69:64–72 (2007)

64-Slice Computed Tomography Coronary Angiography in Patients With High, Intermediate, or Low Pretest Probability of Significant Coronary Artery Disease


Computed Tomography Coronary Angiography for Rapid Disposition of Low-risk Emergency Department Patients with Chest Pain Syndromes

ACADEMIC EMERGENCY MEDICINE 2007; 14:112–116 © 2007

N = 54 85% sent home from ER

Patient Conder	TIMI Risk Score	L Coronart Angiography	Stress Test	Cardiac Catheterization
Patient, Gender	TIMI HISK Score	CT Coronar, Angiography	Stress Test	Cardiac Cathetenzation
53, M	2	50% LAD stenotis 50% RCA stenosis 60% Left circumflex stenosis Calcium score of 3/3	N/A	N/A
43, M	0	60% RCA stenosis 40% LAD stenosis Calcium score of 0	N/A	N/A
55, F	1	50% LAD stenosis 50% Left circumflex stenosis Calcium score of 0	Negative for ischemia	N/A
40, F	0	50% RCA stenosis Calcium score of 0	Negative for ischemia	N/A
63, F	1	60% LAD stenosis (estial) Calcium score of 1/8	Positive for reversible ischemia	60% LAD stenosis (ostial)
43, M	1	80% LAD stenosis 70% Left circumf ex stenosis Calcium score of 484	Positive for reversible ischemia	80% LAD stenosis 60% Left circumflex stenosis 80% OM1 stenosis

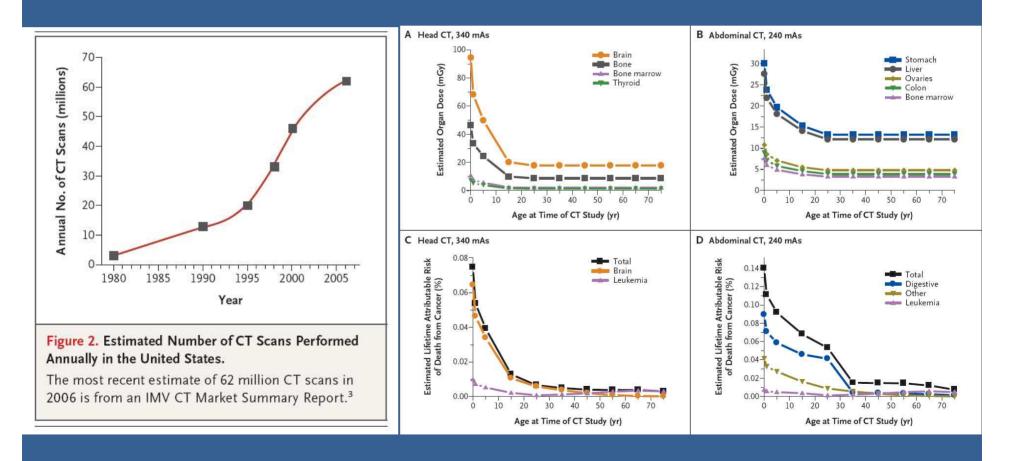
Accuracy of 64-Slice Computed Tomography to Classify and Quantify Plaque Volumes in the Proximal Coronary System

Use of 64-slice CT in symptomatic patients after coronary bypass surgery: evaluation of grafts and coronary arteries

Table 2 Detection of	Table 2 Detection of significant graft and CAD										
		TP	ΤN	ED	EN		Sensitivity (%)		PPV (%)	NPV (%)	
All grants	109	49	59	1	0	0.96	100 (90.9-100	· · · · · · · · · · · · · · · · · · ·	98.0 (88.0-99.9)	100 (92.4-100)	
Arterial grafts	45	10	35	0	0	1.0	100 (65.5-100	, , ,	100 (65.5-100)	100 (87.7-100)	
Venous grafts	64	39	24	1	0	0.93	100 (88.8-100	, , , ,	97.5 (85.3-99.9)	100 (82.8-100)	
All graft segments	182	71	106	4	1	0.95	98.6 (91.5-99.		94.7 (86.2-98.3)	99 1 (01.2 - 77.9)	
Arterial segments	57	57	(2			10	100 (73 2-10)	,	(100, 75.2-100)	100 (89.8-100)	
Venous segments	125 123	57	63	4	1	0.93 0.92	98.3 (89.5-99.	, , , ,	93.4 (83.3-97.9)	98.4 (90.5-99.9)	
Distal run-offs Non-grafted native	123	8	106	8	1	0.92	88.8 (50.7-99)	4) 93.0 (86.2-96.7)	50.0 (25.5-74.5)	99.0 (94.2-99.9)	
coronary arteries											
Coronary segments	288	62	192	32	2	0.86	96.9 (88.2-99.	5) 85.7 (80.3-89.9)	66.0 (55.4-75.2)	99.0 (95.9-99.8)	
Coronary vessels	116	42	50	24	0	0.83	100 (89.6-100	, , ,	63.6 (50.8-74.9)	100 (91.1–100)	
								· · · ·			
True positive (TP); true	negativ	ve (TN); false	positi	ve (FP)	; false n	egative (FN); inte	observer variability (κ); I	Between brackets: 95%	CI.	
			Svc-		MA	II SVG	LIMA	RIMA	RIMA RC II RIMA		
MO1 SVG			D2			D2 M PDA		RCA	RC/	4	

Coronary Stent Patency and In-Stent Restenosis: Determination with 64-Section Multidetector CT Coronary Angiography—Initial Experience¹

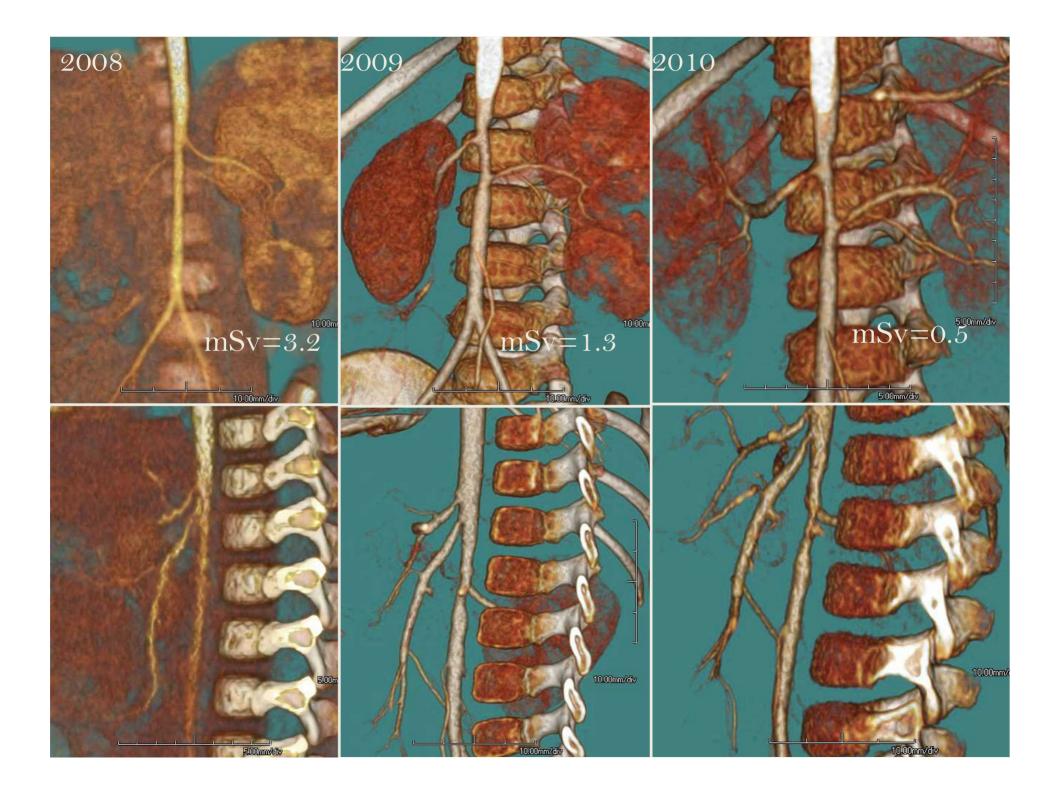
N = 39 Sens = 89% Spec = 95% PPV = 94% NPV = 90%

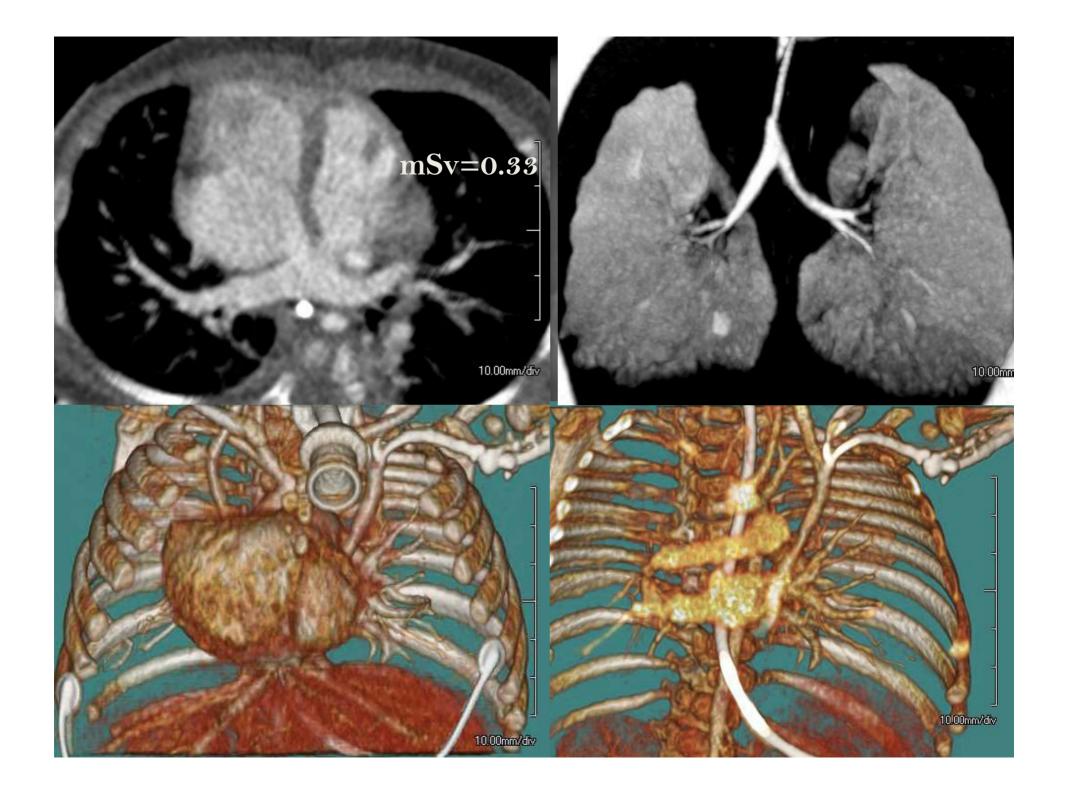

Image Quality Scores with Respect to Stent Size

Stent Diameter			Image Quality Sco	ore*
(mm)	No. of Stents	1	2	3
2.75	5	0	4 (80)	1 (20)
3.0	18	0	6 (33)	12 (77)
3.5	16	0	0	16 (100)

CURRENT CONCEPTS

Computed Tomography — An Increasing Source of Radiation Exposure

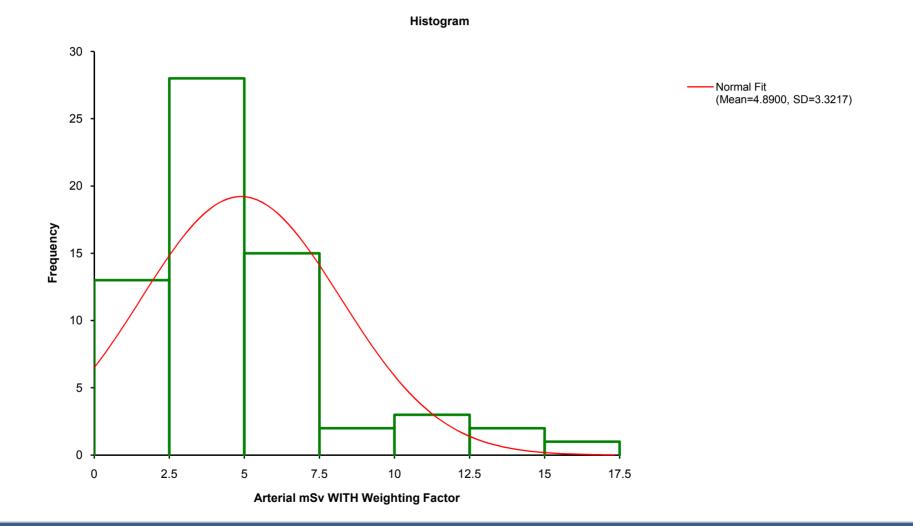

David J. Brenner, Ph.D., D.Sc., and Eric J. Hall, D.Phil., D.Sc. N Engl J Med 2007;357:2277-84.



Low kVp imaging for dose reduction in dual-source cardiac CT María Luaces Int J Cardiovasc Imaging March 2009

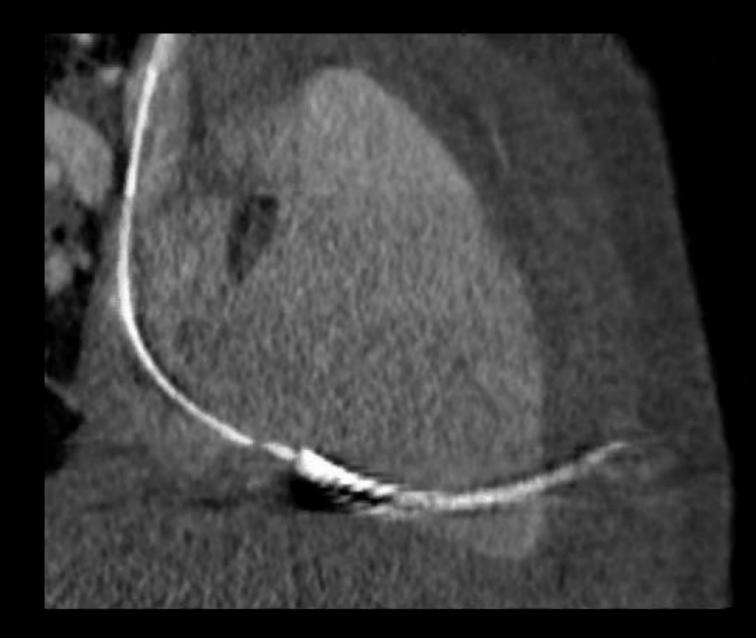
Table 1	Radiation d	lose and im	age quality	parameters at	100 vs.	120 kVp	in a group	p of 273	patients 1	undergoing	coronary (CT

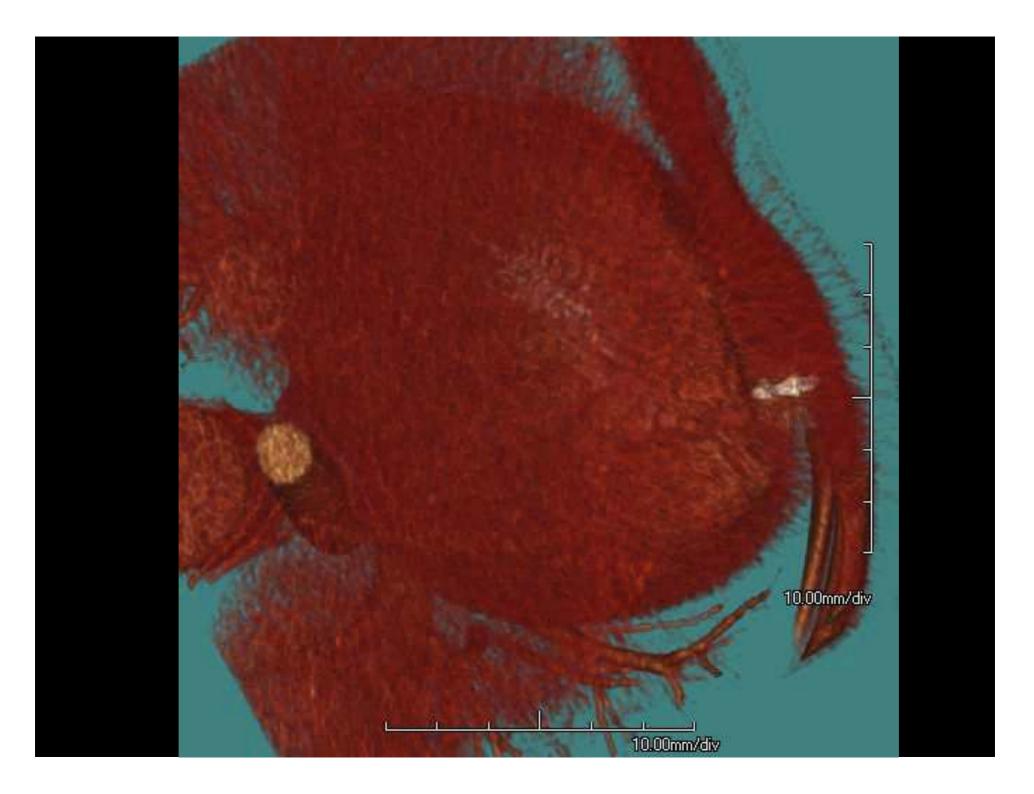
	100 kVp ($n = 63$)	120 kVp ($n = 210$)	Р	100 vs. 120 kVp
ROI size (cm)	37.4 ± 3.35	40.3 ± 4.49	< 0.001	Smaller patients
$\mathrm{CTDI}_{\mathrm{vol}}$	32.6 ± 6.85	68.9 ± 23.3	< 0.001	52.6% \downarrow in dose
mAs	245 ± 41.4	330 ± 48.7	< 0.001	Effect of size based tube current modulation
SNR	9.88 ± 3.21	8.65 ± 3.31	0.01	12.5% † in SNR
CNR	7.11 ± 2.67	5.93 ± 2.57	0.002	16.6% ↑ in CNR
Etopo (cm)	38.1 ± 3.57	41.6 ± 4.96	< 0.001	



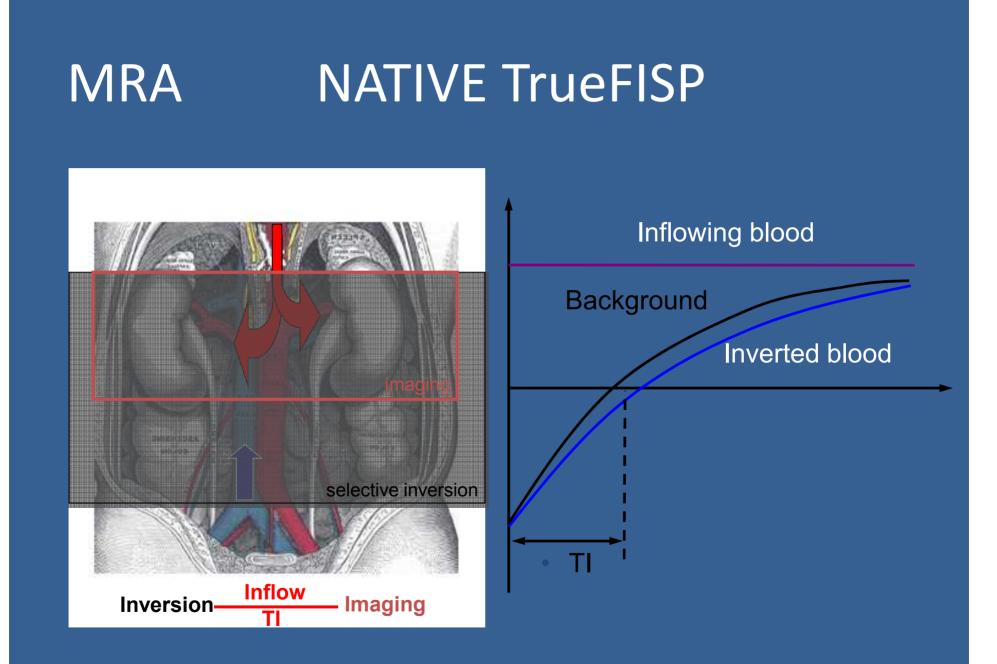

Pediatric CCT at 80KV

mSv: with age weighting Factor (4.9)

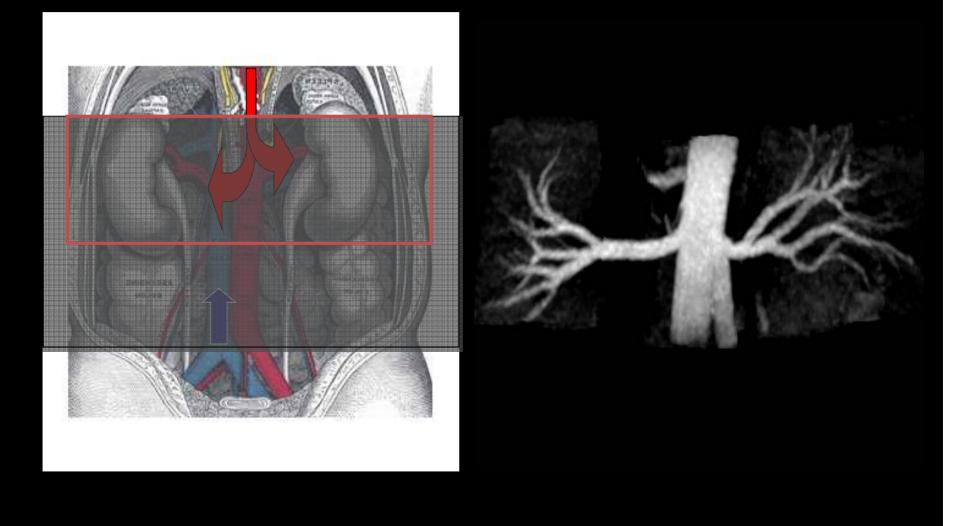



Arterial mSv WO Weighting Factor

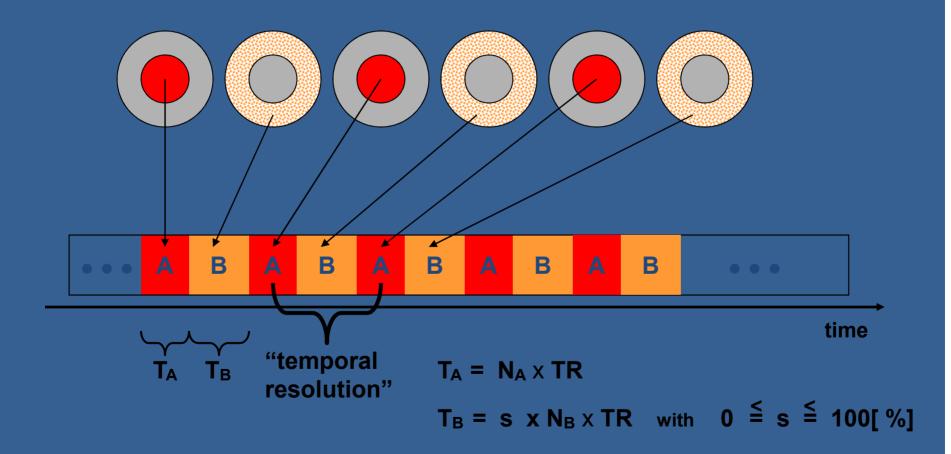



MDCT Scanner	Mode	Detector Configuration (Channels × mm)	Pitch	Gantry Rotation Time (s)	Table Speed (mm/s)	Scan Time (s)	Slice Thickness (mm)	RI (mm)	Number of Images
20-Chanr	nel						61		^**
Siemens	IR	20 imes 0.6	1.2	0.5	29	31	0.75	0.5	1800
Siemens	HR	16 × 1.2	1.5	0.33	87	10	1.5	0.8	1125
32-Chanr	nel								
GE	IR	32 imes 0.625	0.984	0.7	28	32	0.625	0.5	1800
Toshiba	IR	32×0.5	0.844	0.5	27	33	05	0.4	2250
GE	HR	32 × 1.25	1.375	0.35	157	6	1.25	0.8	1125
Toshiba	HR	32 × 1.0	1.5	0.4	120	7.5	1.0	0.8	1125
40-Chanr	nel					()			
Philips	IR	40 imes 0.625	0.6	0.5	30	30	0.75	0.5	1800
Siemens	IR	(2) 20 × 0.6	1.2	0.5	29	31	0.75	0.5	1800
Philips	HR	32 × 1.25	1.5	0.4	150	6	1.5	0.8	1125
Siemens	HR	(2) 16 × 1.2	1.5	0.33	87	10	1.5	0.8	1125
64-Chanr	nel								
GE	IR	64 imes 0.625	0.516	0.7	30	30	0.625	0.5	1800
Philips	IR	64 imes 0.625	0.5	0.75	27	34	0.75	0.5	1800
Siemens	IR	(2) 32 × 0.6	0.7	0.5	27	33.5	0.75	0.5	1800
	IR ^a	(2) 32 × 0.6	0.7	0.5	27	33.5	0.75	0.5	1800
Toshiba	IR	64 imes 0.5	0.5	0.6	27	33	05	0.4	2250
GE	HR	32 × 1.25	1.375	0.35	157	6	1.25	0.8	1125
Philips	HR	32 × 1.25	1.5	0.4	150	6	1.5	0.8	1125
Siemens	HR	(2) 24 × 1.2	1.5	0.33	131	7	1.5	0.8	1125
	HR ^a	(2) 24 × 1.2	3	0.33	262	3.5	1.5	0.8	1125
Toshiba	HR	32 × 1.0	1.5	0.4	120	7.5	1.0	0.8	1125

MDCT Scanner	Mode	Detector Configuration (Channels × mm)	Pitch	Gantry Rotation Time (s)	Table Speed (mm/s)	Scan Time (s)	Slice Thickness (mm)	RI (mm)	Number of Images
128-Char	nnel								
Siemens	IR IR ^a	(2) 64×0.6 (2) 64×0.6	0.4 0.4	0.5 0.5	30.7 30.7	29 29	0.75 0.75	0.5 0.5	1800 1800
Siemens	HR HRª	(2) 32 × 1.2 (2) 32 × 1.2	1.5 3.5	0.33 0.33	174.5 407	5 2.2	1.5 1.5	0.8 0.8	1125 1125
160-Char	nnel								
Toshiba	IR ^{b,c}	160×0.5	0.5	0.75	53	17	0.5	0.4	2250
Toshiba	HR ^{b,c}	80 × 1.0	1.5	0.4	300	3	1.0	0.8	1125
256-Char	nnel								
Philips	IR	(2) 64 $ imes$ 0.625	0.5	0.75	27	34	0.625	0.5	1800
	IR	(2) 128 × 0.625	0.5	0.75	53	17	0.625	0.5	1800
Philips	HR	(2) 64 × 1.25	1.5	0.27	444	2	1.25	0.8	1125
320-Char	nnel								
Toshiba	IR ^{b,c}	160 imes 0.5	0.5	0.75	53	17	0.5	0.4	2250
Toshiba	HR ^{b,c}	80 × 1.0	1.5	0.4	300	3	1.0	0.8	1125



CVMR: Current Directions


- Improving plaque characterization
- Increasing spatial resolution
- Simplifying workflow: improving efficiency
- Improving patient comfort

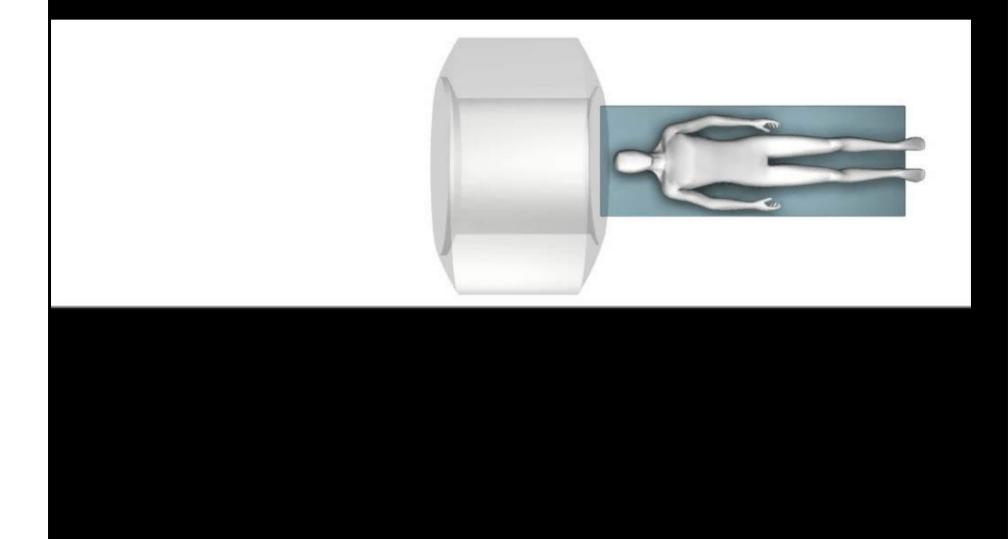
NATIVE TrueFISP

Time Resolved MR Angiography

TimCT Angiography

Conventional

1			Position 230mm above feet
2		1	I_trufisp_feet
3		6	Il_trufisp_legs
4		6	III_trufisp_abdomen
5	ń.	a	I_fl3d-cor_feet_pre
6	ň.	a	II_fl3d-cor_legs_pre
7	∧ †∾	a	III_fl3d-cor_abdomen_pre
8	¢		inject gad
9	Μ₩		III_care_bolus_cor
10	Å.	1	III_fl3d-cor_abdomen_post
11	ň.	6	ll_fl3d-cor_legs_post
12	ň.	G	I_fl3d-cor_feet_post


TimCT

1	Fastview
2 Å 🛉∾	TestBolus_tra
3 🔥	Vesselscout_1440mm
4 ∧í†∿	Angio_pre_1300mm
5	inject
6 Å †ै∿	Angio_post_1300mm

easier workflow

Time Resolved MR Angiography

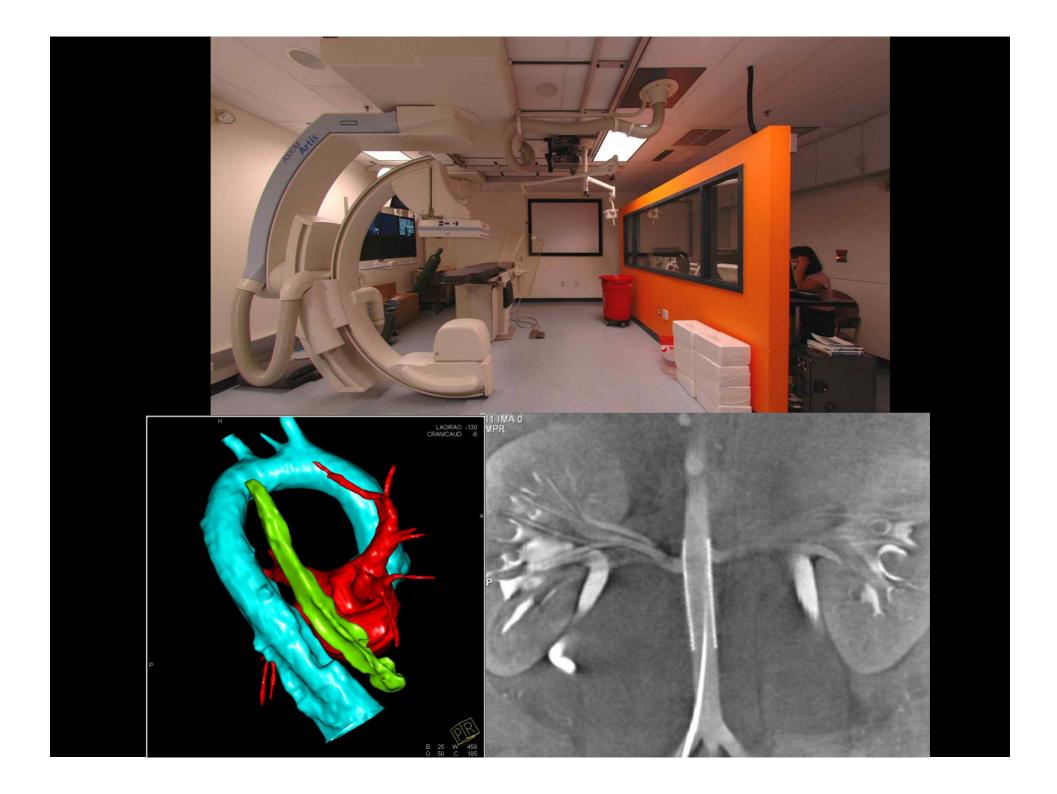
TimCT Angiography Continuous Table move

TimCT Angiography

Multi-step Angiography

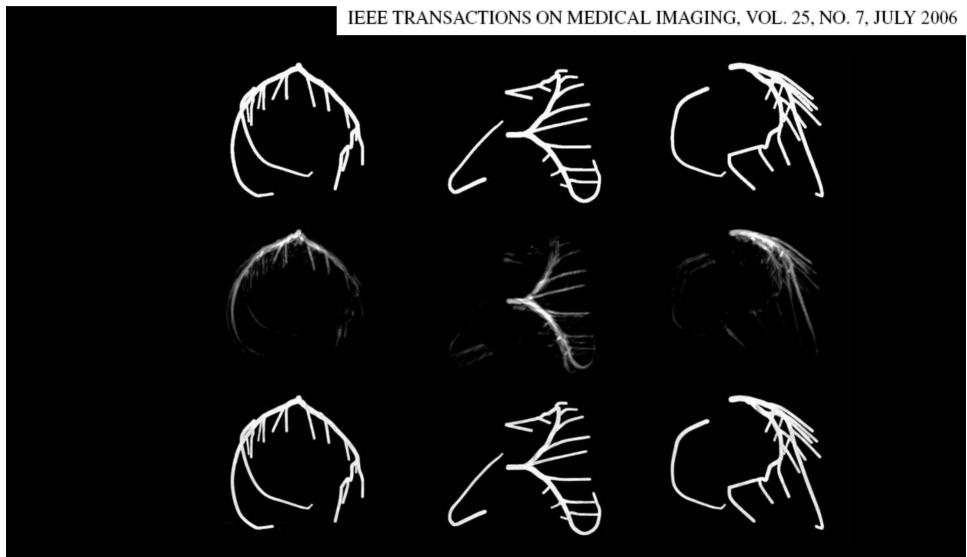
TimCT Angiography

LMU, Munich, Germany¹

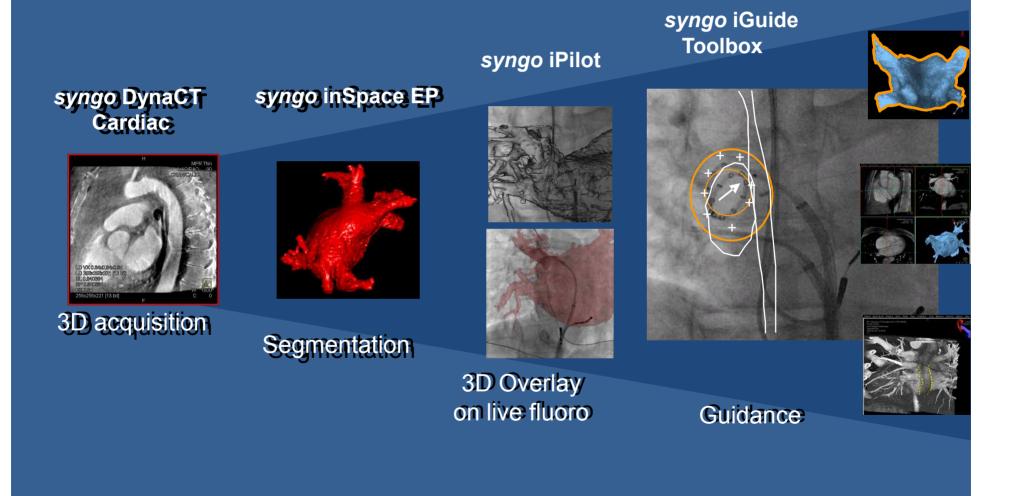

The Interventional Cardiology Suit

• C - Arm CT

Interventional – MRI unit

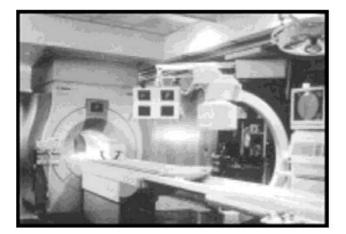

Pre-procedural imaging

- Intra-procedural guidance
- Real time monitoring

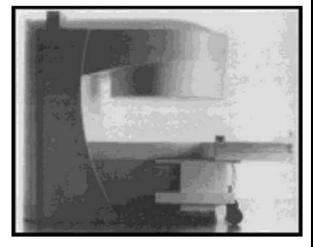


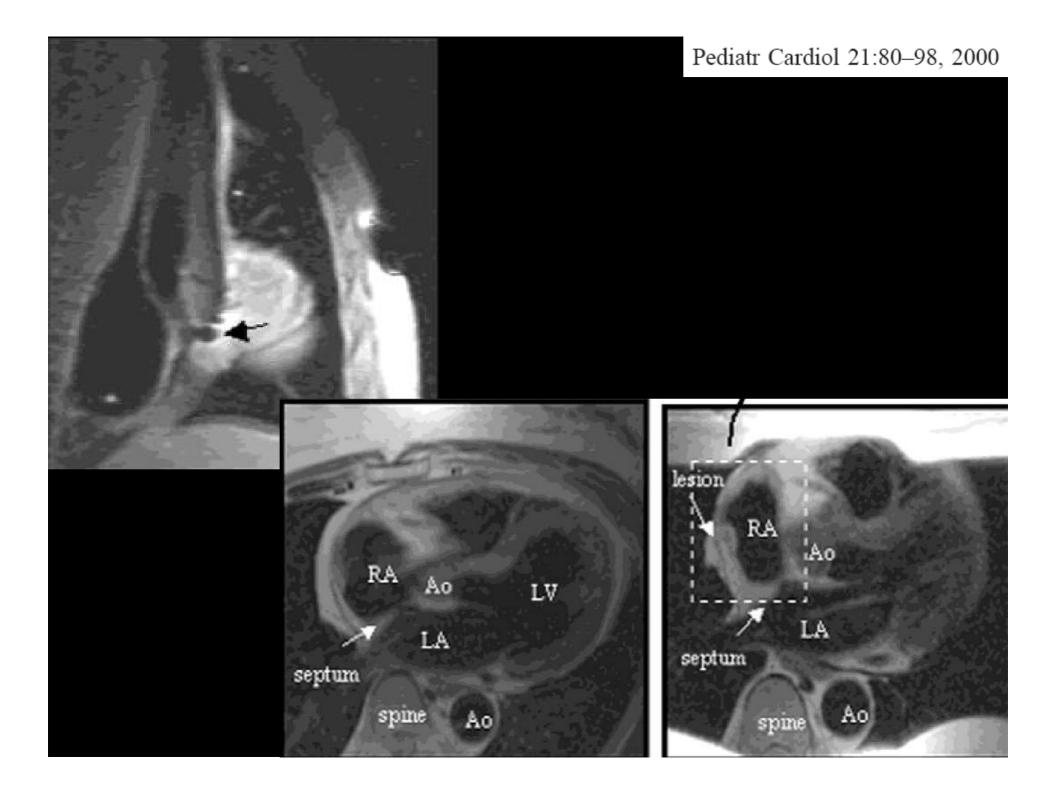
Motion-Compensated and Gated Cone Beam Filtered Back-Projection for 3-D Rotational X-Ray Angiography

Dirk Schäfer*, Jörn Borgert, Volker Rasche, and Michael Grass



Workflow 3D guidance in EP




Real-Time Magnetic Resonance Imaging: Diagnostic and Interventional Applications

Pediatr Cardiol 21:80-98, 2000

Conclusions

 Noninvasive CVCT and CVMR are useful adjuncts to interventional cardiology practice

- CCT has rapidly revolutionized clinical algorithms
- Latest 3rd Generation MDCT scanners will further advance clinical care. Lower radiation dose with high image quality is the goal. New DATA is necessary
- New advances in MRI: plaque characterization,
 MRA sequences will challenge MDCT

 Interventional Cardiology suit is actively changing: CT and MR multiplanar soft tissue and angiographic visualization capabilities

ANGIOPLASTY SUMMIT

April 28 – 30 Seoul, Korea

TCTAP2010

TRANSCATHETER CARDIOVASCULAR THERAPIES ASIA PACIFIC

MDCT & MRI: Where We Are April 29, 2010

Thank you for your attention